
NIST – Talk 1

Post-quantum Cryptography
Multivariate Public Key Cryptography

Jintai Ding

Academis Sinica
University of Cincinnati

April 2, 2014

1 33

Outline

1 Introduction

2 Signature schemes

3 Encryption schemes

4 Security Analysis

2 33

Outline

1 Introduction

2 Signature schemes

3 Encryption schemes

4 Security Analysis

3 33

PQC

Cryptosystems that have potential to resist the future quantum
computer attacks.

Code-based cryptography

Hash-based crytograohy
Lattice cryptography
Multivariate cryptography

4 33

PQC

Cryptosystems that have potential to resist the future quantum
computer attacks.

Code-based cryptography
Hash-based crytograohy

Lattice cryptography
Multivariate cryptography

4 33

PQC

Cryptosystems that have potential to resist the future quantum
computer attacks.

Code-based cryptography
Hash-based crytograohy
Lattice cryptography

Multivariate cryptography

4 33

PQC

Cryptosystems that have potential to resist the future quantum
computer attacks.

Code-based cryptography
Hash-based crytograohy
Lattice cryptography
Multivariate cryptography

4 33

What is a MPKC?

Multivariate Public Key Cryptosystems
- Cryptosystems with public keys as a set of multivariate
functions

Public key: G is a map from kn to km:

G (x1, . . . , xn) = (g1(x1, . . . , xn), . . . , gm(x1, . . . , xn));

G = L2 ◦ F ◦ L1,

over k , a small finite field like GF(28)
F : central map and F−1 easy to compute.
L1 and L2: "locks" on the secret of F .
Private key: a way to compute G−1 via the map
decomposition or factoring.

G−1 = L−1
2 ◦ F

−1 ◦ L−1
1 .

5 33

What is a MPKC?

Multivariate Public Key Cryptosystems
- Cryptosystems with public keys as a set of multivariate
functions
Public key: G is a map from kn to km:

G (x1, . . . , xn) = (g1(x1, . . . , xn), . . . , gm(x1, . . . , xn));

G = L2 ◦ F ◦ L1,

over k , a small finite field like GF(28)
F : central map and F−1 easy to compute.
L1 and L2: "locks" on the secret of F .

Private key: a way to compute G−1 via the map
decomposition or factoring.

G−1 = L−1
2 ◦ F

−1 ◦ L−1
1 .

5 33

What is a MPKC?

Multivariate Public Key Cryptosystems
- Cryptosystems with public keys as a set of multivariate
functions
Public key: G is a map from kn to km:

G (x1, . . . , xn) = (g1(x1, . . . , xn), . . . , gm(x1, . . . , xn));

G = L2 ◦ F ◦ L1,

over k , a small finite field like GF(28)
F : central map and F−1 easy to compute.
L1 and L2: "locks" on the secret of F .
Private key: a way to compute G−1 via the map
decomposition or factoring.

G−1 = L−1
2 ◦ F

−1 ◦ L−1
1 .

5 33

a MPKC signature system

Signing (a hash of) a document:

(x1, . . . , xn) ∈ G−1(y1, . . . , ym)

G−1(y1, . . . , ym) = L−1
2 ◦ F

−1 ◦ L−1
1 (y1, . . . , ym).

Verifying: (y1, . . . , ym)
?
= G (x1, . . . , xn).

6 33

a MPKC signature system

Signing (a hash of) a document:
(x1, . . . , xn) ∈ G−1(y1, . . . , ym)

G−1(y1, . . . , ym) = L−1
2 ◦ F

−1 ◦ L−1
1 (y1, . . . , ym).

Verifying: (y1, . . . , ym)
?
= G (x1, . . . , xn).

6 33

Theoretical Foundation

Direct attack is to solve the set of equations:

G (M) = G (x1, ..., xn) = (y ′1, ..., y
′
m).

- Solving a set of n randomly chosen equations (nonlinear)
with n variables is NP-hard, though this does not necessarily
ensure the security of the systems.

7 33

Theoretical Foundation

Direct attack is to solve the set of equations:

G (M) = G (x1, ..., xn) = (y ′1, ..., y
′
m).

- Solving a set of n randomly chosen equations (nonlinear)
with n variables is NP-hard, though this does not necessarily
ensure the security of the systems.

7 33

Quadratic Constructions

1) Efficiency considerations lead to mainly quadratic
constructions.

Gl (x1, ..xn) =
∑
i ,j

αlijxixj +
∑

i

βlixi + γl .

2) Mathematical structure consideration: Any set of high
degree polynomial equations can be reduced to a set of
quadratic equations.

x1x2x3 = 1,

is equivalent to

x4 = x1x2

x4x3 = 1.

8 33

Quadratic Constructions

1) Efficiency considerations lead to mainly quadratic
constructions.

Gl (x1, ..xn) =
∑
i ,j

αlijxixj +
∑

i

βlixi + γl .

2) Mathematical structure consideration: Any set of high
degree polynomial equations can be reduced to a set of
quadratic equations.

x1x2x3 = 1,

is equivalent to

x4 = x1x2

x4x3 = 1.

8 33

The view from the history of Mathematics

RSA – Number Theory – the 18th century mathematics

ECC – Theory of Elliptic Curves – the 19th century
mathematics
Multivariate Public key cryptosystem – Algebraic Geometry –
the 20th century mathematics

Algebraic Geometry – Theory of Polynomial Rings

Humans have been trying to solve polynomial equations for
thousands of years.

9 33

The view from the history of Mathematics

RSA – Number Theory – the 18th century mathematics
ECC – Theory of Elliptic Curves – the 19th century
mathematics

Multivariate Public key cryptosystem – Algebraic Geometry –
the 20th century mathematics

Algebraic Geometry – Theory of Polynomial Rings

Humans have been trying to solve polynomial equations for
thousands of years.

9 33

The view from the history of Mathematics

RSA – Number Theory – the 18th century mathematics
ECC – Theory of Elliptic Curves – the 19th century
mathematics
Multivariate Public key cryptosystem – Algebraic Geometry –
the 20th century mathematics

Algebraic Geometry – Theory of Polynomial Rings

Humans have been trying to solve polynomial equations for
thousands of years.

9 33

A quick historic overview

Single variable quadratic equation – Babylonian around 1800
to 1600 BC

Cubic and quartic equation – around 1500

Tartaglia Cardano
Multivariate system– 1964-1965
Buchberger : Gröobner Basis
Hironaka: Normal basis

10 33

A quick historic overview

Single variable quadratic equation – Babylonian around 1800
to 1600 BC

Cubic and quartic equation – around 1500

Tartaglia Cardano

Multivariate system– 1964-1965
Buchberger : Gröobner Basis
Hironaka: Normal basis

10 33

A quick historic overview

Single variable quadratic equation – Babylonian around 1800
to 1600 BC

Cubic and quartic equation – around 1500

Tartaglia Cardano
Multivariate system– 1964-1965
Buchberger : Gröobner Basis
Hironaka: Normal basis

10 33

The hardness of the problem

Single variable case – Galois’s work.

Newton method – continuous system
Berlekamp’s algorithm – finite field and low degree

Multivariate case: NP- hardness of the generic systems.
Numerical solvers – continuous systems
Finite field case

11 33

The hardness of the problem

Single variable case – Galois’s work.

Newton method – continuous system
Berlekamp’s algorithm – finite field and low degree
Multivariate case: NP- hardness of the generic systems.
Numerical solvers – continuous systems
Finite field case

11 33

Historical Development

Early attempts by Diffie, Fell, Imai, Ong, Matsumoto, Schnorr,
Shamir, Tsujii, etc

Fast development in the late 1990s.

12 33

Historical Development

Early attempts by Diffie, Fell, Imai, Ong, Matsumoto, Schnorr,
Shamir, Tsujii, etc
Fast development in the late 1990s.

12 33

Outline

1 Introduction

2 Signature schemes

3 Encryption schemes

4 Security Analysis

13 33

How to construct G?

The unbalanced Oil-Vinegar scheme by Kipnis, Patarin and
Goubin 1999.

G = F ◦ L.
F : nonlinear, easy to compute F−1.
L: invertible linear, to hide the structure of F .

14 33

How to construct G?

The unbalanced Oil-Vinegar scheme by Kipnis, Patarin and
Goubin 1999.

G = F ◦ L.
F : nonlinear, easy to compute F−1.
L: invertible linear, to hide the structure of F .

14 33

How to construct G?

More efficient construction - Multi-layer UOV – Rainbow by
Ding and Schmidt 2005.

G = L2 ◦ F ◦ L1.
F : Multilayer UOV, easy to compute F−1.
L1, L2: invertible linear, to hide the structure of F .

15 33

How to construct G?

More efficient construction - Multi-layer UOV – Rainbow by
Ding and Schmidt 2005.

G = L2 ◦ F ◦ L1.
F : Multilayer UOV, easy to compute F−1.
L1, L2: invertible linear, to hide the structure of F .

15 33

Unbalanced Oil-vinegar (uov) schemes

F = (f1(x1, .., xo , x ′1, ..., x
′
v), · · · , fo(x1, .., xo , x ′1, ..., x

′
v)).

Each fi is an Oil-Vinegar polynomial:

fl (x1, ., xo , x ′1, ., x
′
v) =

∑
alijxix ′j +

∑
blijx ′i x

′
j +

∑
clixi+

∑
dlix ′i +el .

Oil variables: x1, ..., xo .

Vinegar variables: x ′1, ..., x
′
v .

16 33

Unbalanced Oil-vinegar (uov) schemes

F = (f1(x1, .., xo , x ′1, ..., x
′
v), · · · , fo(x1, .., xo , x ′1, ..., x

′
v)).

Each fi is an Oil-Vinegar polynomial:

fl (x1, ., xo , x ′1, ., x
′
v) =

∑
alijxix ′j +

∑
blijx ′i x

′
j +

∑
clixi+

∑
dlix ′i +el .

Oil variables: x1, ..., xo .

Vinegar variables: x ′1, ..., x
′
v .

16 33

How to invert F?

Randomly assign values to Vinegar variables:

fl (x1, ., xo , x ′1, ., x
′
v︸ ︷︷ ︸

fix the values

) =

∑
alijxix ′j +

∑
blijx ′i x

′
j +

∑
clixi +

∑
dlix ′i + el .

fl (x1, ., xo , x ′1, ., x
′
v) =∑

alijxix ′j +
∑

blijx ′i x
′
j +

∑
clixi +

∑
dlix ′i + el .

F : linear in Oil variables: x1, .., xo .

=⇒ F : easy to invert.

17 33

How to invert F?

Randomly assign values to Vinegar variables:

fl (x1, ., xo , x ′1, ., x
′
v︸ ︷︷ ︸

fix the values

) =

∑
alijxix ′j +

∑
blijx ′i x

′
j +

∑
clixi +

∑
dlix ′i + el .

fl (x1, ., xo , x ′1, ., x
′
v) =∑

alijxix ′j +
∑

blijx ′i x
′
j +

∑
clixi +

∑
dlix ′i + el .

F : linear in Oil variables: x1, .., xo .

=⇒ F : easy to invert.
17 33

The F for Rainbow

Layer 1:
Vinegar: x1, ., xv1

Oil: xv1+1, ., xv1+o1

(f1, ..., fo1)

Layer 2:
Vinegar: x1, ., xv1 , xv1+1, ., xv1+o1 Oil: xv1+o1+1, ., xv1+o1+o2

(fo1+1, ..., fo1+o2)

F = (f1, .., fo1 , fo1+1, ..., fo1+o2).

18 33

The F for Rainbow

Layer 1:
Vinegar: x1, ., xv1

Oil: xv1+1, ., xv1+o1

(f1, ..., fo1)

Layer 2:
Vinegar: x1, ., xv1 , xv1+1, ., xv1+o1 Oil: xv1+o1+1, ., xv1+o1+o2

(fo1+1, ..., fo1+o2)

F = (f1, .., fo1 , fo1+1, ..., fo1+o2).

18 33

The F for Rainbow

Layer 1:
Vinegar: x1, ., xv1

Oil: xv1+1, ., xv1+o1

(f1, ..., fo1)

Layer 2:
Vinegar: x1, ., xv1 , xv1+1, ., xv1+o1 Oil: xv1+o1+1, ., xv1+o1+o2

(fo1+1, ..., fo1+o2)

F = (f1, .., fo1 , fo1+1, ..., fo1+o2).

18 33

The F−1 for Rainbow

Layer 1:
Assign values to Vinegar: x1, ., xv1 in

(f1, ..., fo1) = (y1, .., yo1),

solve and find the value of Oil: xv1+1, ., xv1+o1

Layer 2:
Plug in values of
Vinegar: x1, ., xv1 , xv1+1, ., xv1+o1

in
(fo1+1, ..., fo1+o2) = (yo1+1, .., yo1+o2)

find the values of Oil: xv1+o1+1, ., xv1+o1+o2

This givs us F−1(yi , .., yo1+o2 :
(x1, .., xv1 , ..., xo1+v1 , ..., xo1+o2+v1).

19 33

The F−1 for Rainbow

Layer 1:
Assign values to Vinegar: x1, ., xv1 in

(f1, ..., fo1) = (y1, .., yo1),

solve and find the value of Oil: xv1+1, ., xv1+o1

Layer 2:
Plug in values of
Vinegar: x1, ., xv1 , xv1+1, ., xv1+o1

in
(fo1+1, ..., fo1+o2) = (yo1+1, .., yo1+o2)

find the values of Oil: xv1+o1+1, ., xv1+o1+o2

This givs us F−1(yi , .., yo1+o2 :
(x1, .., xv1 , ..., xo1+v1 , ..., xo1+o2+v1).

19 33

The F−1 for Rainbow

Layer 1:
Assign values to Vinegar: x1, ., xv1 in

(f1, ..., fo1) = (y1, .., yo1),

solve and find the value of Oil: xv1+1, ., xv1+o1

Layer 2:
Plug in values of
Vinegar: x1, ., xv1 , xv1+1, ., xv1+o1

in
(fo1+1, ..., fo1+o2) = (yo1+1, .., yo1+o2)

find the values of Oil: xv1+o1+1, ., xv1+o1+o2

This givs us F−1(yi , .., yo1+o2 :
(x1, .., xv1 , ..., xo1+v1 , ..., xo1+o2+v1).

19 33

Security analysis

1 Systematic theoretical and experimental analysis

Direct attack does not work against best existing polynomial
solving algorithms
The cpomplexity bahves just like a random system.
Finding keys again becomes a problem of solving polynomial
equations
Here we need to be careful with choice of parameters.
MinRank attack on Rainbow:
Given a set of matrix M1, ..Mn find a non-trivial

∑
aiMi with

lowest rank.
MinRank is a hard problem and attack it is reduced to solve
multivariate polynomial equations again.
Natural Side channel attack resistance.

2 No weakness yet being found in the design.

20 33

Security analysis

1 Systematic theoretical and experimental analysis

Direct attack does not work against best existing polynomial
solving algorithms
The cpomplexity bahves just like a random system.
Finding keys again becomes a problem of solving polynomial
equations
Here we need to be careful with choice of parameters.
MinRank attack on Rainbow:
Given a set of matrix M1, ..Mn find a non-trivial

∑
aiMi with

lowest rank.
MinRank is a hard problem and attack it is reduced to solve
multivariate polynomial equations again.
Natural Side channel attack resistance.

2 No weakness yet being found in the design.

20 33

Parameters and Performance

Rainbow(17,13,13) over GF(28): Signature size: 43 bytes,
private key: 19.1KB, public key 25.1KB.
Rainbow(26,16,17) over GF(28): Signature size: 59 bytes ,
private key 45.0KB, public key 59.0KB.
Rainbow(36,21,22) over GF(28): Signature size: 79 bytes,
private key 101.5KB, public key 136.1KB.

21 33

Parameters and Performance

High efficiency – solving linear equations.
IC for Rainbow: 804 cycles. (ASAP 2008)
FPGA implementation at Bochum (CHES 2009) – Beat ECC
in area and speed.
Faster parallel implementation 200 cycles – (PQC 2011)

Relative large public key
Further optimizations – Petzoldt, Buchmann etc. at TU
Darmstadt
Highly efficient compact signature
Small devices – RFID, Sensors.

22 33

Parameters and Performance

High efficiency – solving linear equations.
IC for Rainbow: 804 cycles. (ASAP 2008)
FPGA implementation at Bochum (CHES 2009) – Beat ECC
in area and speed.
Faster parallel implementation 200 cycles – (PQC 2011)
Relative large public key
Further optimizations – Petzoldt, Buchmann etc. at TU
Darmstadt

Highly efficient compact signature
Small devices – RFID, Sensors.

22 33

Parameters and Performance

High efficiency – solving linear equations.
IC for Rainbow: 804 cycles. (ASAP 2008)
FPGA implementation at Bochum (CHES 2009) – Beat ECC
in area and speed.
Faster parallel implementation 200 cycles – (PQC 2011)
Relative large public key
Further optimizations – Petzoldt, Buchmann etc. at TU
Darmstadt
Highly efficient compact signature
Small devices – RFID, Sensors.

22 33

Another choice – HFEV-Minus – Quartz

The basic design: Hidden field equation system (HFE) with
Vinegar variables and Minus modification designed in 1999

HFE: kn can be identified as a lrage field K̄ = k[x]/g(x),
where g(x) an ireeducible polynomial.

We use a olynomail

F (X) =
∑

aijX qi+qj
+
∑

biX qi
+ C ..

Very short signature (107 bits) but slow.
No weakness yet found.
New designs by Ding, Petzoldt, Tao, Yang. very efficient
(more than 1000 times faster with a 92 bits signature, or
170bits for post-quantum signature.)
Solid theoretical and experimental security analysis.
Degree of regularity, solving degree, degeneration degree

23 33

Another choice – HFEV-Minus – Quartz

The basic design: Hidden field equation system (HFE) with
Vinegar variables and Minus modification designed in 1999

HFE: kn can be identified as a lrage field K̄ = k[x]/g(x),
where g(x) an ireeducible polynomial.

We use a olynomail

F (X) =
∑

aijX qi+qj
+
∑

biX qi
+ C ..

Very short signature (107 bits) but slow.

No weakness yet found.
New designs by Ding, Petzoldt, Tao, Yang. very efficient
(more than 1000 times faster with a 92 bits signature, or
170bits for post-quantum signature.)
Solid theoretical and experimental security analysis.
Degree of regularity, solving degree, degeneration degree

23 33

Another choice – HFEV-Minus – Quartz

The basic design: Hidden field equation system (HFE) with
Vinegar variables and Minus modification designed in 1999

HFE: kn can be identified as a lrage field K̄ = k[x]/g(x),
where g(x) an ireeducible polynomial.

We use a olynomail

F (X) =
∑

aijX qi+qj
+
∑

biX qi
+ C ..

Very short signature (107 bits) but slow.
No weakness yet found.

New designs by Ding, Petzoldt, Tao, Yang. very efficient
(more than 1000 times faster with a 92 bits signature, or
170bits for post-quantum signature.)
Solid theoretical and experimental security analysis.
Degree of regularity, solving degree, degeneration degree

23 33

Another choice – HFEV-Minus – Quartz

The basic design: Hidden field equation system (HFE) with
Vinegar variables and Minus modification designed in 1999

HFE: kn can be identified as a lrage field K̄ = k[x]/g(x),
where g(x) an ireeducible polynomial.

We use a olynomail

F (X) =
∑

aijX qi+qj
+
∑

biX qi
+ C ..

Very short signature (107 bits) but slow.
No weakness yet found.
New designs by Ding, Petzoldt, Tao, Yang. very efficient
(more than 1000 times faster with a 92 bits signature, or
170bits for post-quantum signature.)

Solid theoretical and experimental security analysis.
Degree of regularity, solving degree, degeneration degree

23 33

Another choice – HFEV-Minus – Quartz

The basic design: Hidden field equation system (HFE) with
Vinegar variables and Minus modification designed in 1999

HFE: kn can be identified as a lrage field K̄ = k[x]/g(x),
where g(x) an ireeducible polynomial.

We use a olynomail

F (X) =
∑

aijX qi+qj
+
∑

biX qi
+ C ..

Very short signature (107 bits) but slow.
No weakness yet found.
New designs by Ding, Petzoldt, Tao, Yang. very efficient
(more than 1000 times faster with a 92 bits signature, or
170bits for post-quantum signature.)
Solid theoretical and experimental security analysis.
Degree of regularity, solving degree, degeneration degree

23 33

Outline

1 Introduction

2 Signature schemes

3 Encryption schemes

4 Security Analysis

24 33

The basic design

The public key is given as:

G (x1, ..., xn) = (G1(x1, ..., xn), ...,Gm(x1, ..., xn)) = L2 ◦ F ◦ L1.

Gi are multivariate polynomials over a finite field, which are
mostly degree 2

Any plaintext M = (x ′1, ..., x
′
n) is encrypted via polynomial

evaluation:
G (M) = G (x ′1, ..., x

′
n) = (y ′1, ..., y

′
m).

To decrypt the ciphertext (y ′1, ..., y
′
n), one needs to know a

secret (the secret key) to compute the inverse map G−1 to
find the plaintext (x ′1, ..., x

′
n) = G−1(y ′1, .., y

′
n).

25 33

The basic design

The public key is given as:

G (x1, ..., xn) = (G1(x1, ..., xn), ...,Gm(x1, ..., xn)) = L2 ◦ F ◦ L1.

Gi are multivariate polynomials over a finite field, which are
mostly degree 2
Any plaintext M = (x ′1, ..., x

′
n) is encrypted via polynomial

evaluation:
G (M) = G (x ′1, ..., x

′
n) = (y ′1, ..., y

′
m).

To decrypt the ciphertext (y ′1, ..., y
′
n), one needs to know a

secret (the secret key) to compute the inverse map G−1 to
find the plaintext (x ′1, ..., x

′
n) = G−1(y ′1, .., y

′
n).

25 33

The basic design

The public key is given as:

G (x1, ..., xn) = (G1(x1, ..., xn), ...,Gm(x1, ..., xn)) = L2 ◦ F ◦ L1.

Gi are multivariate polynomials over a finite field, which are
mostly degree 2
Any plaintext M = (x ′1, ..., x

′
n) is encrypted via polynomial

evaluation:
G (M) = G (x ′1, ..., x

′
n) = (y ′1, ..., y

′
m).

To decrypt the ciphertext (y ′1, ..., y
′
n), one needs to know a

secret (the secret key) to compute the inverse map G−1 to
find the plaintext (x ′1, ..., x

′
n) = G−1(y ′1, .., y

′
n).

25 33

Toy example

We use the finite field k = GF [2]/(x2 + x + 1) with 22

elements.

We denote the elements of the field by the set {0 , 1 , 2 , 3} to
simplify the notation.
Here 0 represents the 0 in k , 1 for 1, 2 for x , and 3 for 1 + x .
In this case, 1 + 3 = 2 and 2 ∗ 3 = 1 .

26 33

Toy example

We use the finite field k = GF [2]/(x2 + x + 1) with 22

elements.
We denote the elements of the field by the set {0 , 1 , 2 , 3} to
simplify the notation.
Here 0 represents the 0 in k , 1 for 1, 2 for x , and 3 for 1 + x .
In this case, 1 + 3 = 2 and 2 ∗ 3 = 1 .

26 33

A toy example

G0(x1, x2, x3) = 1 + x2 + 2x0x2 + 3x2
1 + 3x1x2 + x2

2

G1(x1, x2, x3) = 1 + 3x0 + 2x1 + x2 + x2
0 + x0x1 + 3x0x2 + x2

1

G2(x1, x2, x3) = 3x2 + x2
0 + 3x2

1 + x1x2 + 3x2
2

For example, if the plaintext is: x0 = 1 , x1 = 2 , x2 = 3 , then
we can plug into G1,G2 and G3 to get the ciphertext y0 = 0 ,
y1 = 0 , y2 = 1 .
This is a bijective map and we can invert it easily. This
example is based on the Matsumoto-Imai cryptosystem.

27 33

A toy example

G0(x1, x2, x3) = 1 + x2 + 2x0x2 + 3x2
1 + 3x1x2 + x2

2

G1(x1, x2, x3) = 1 + 3x0 + 2x1 + x2 + x2
0 + x0x1 + 3x0x2 + x2

1

G2(x1, x2, x3) = 3x2 + x2
0 + 3x2

1 + x1x2 + 3x2
2

For example, if the plaintext is: x0 = 1 , x1 = 2 , x2 = 3 , then
we can plug into G1,G2 and G3 to get the ciphertext y0 = 0 ,
y1 = 0 , y2 = 1 .

This is a bijective map and we can invert it easily. This
example is based on the Matsumoto-Imai cryptosystem.

27 33

A toy example

G0(x1, x2, x3) = 1 + x2 + 2x0x2 + 3x2
1 + 3x1x2 + x2

2

G1(x1, x2, x3) = 1 + 3x0 + 2x1 + x2 + x2
0 + x0x1 + 3x0x2 + x2

1

G2(x1, x2, x3) = 3x2 + x2
0 + 3x2

1 + x1x2 + 3x2
2

For example, if the plaintext is: x0 = 1 , x1 = 2 , x2 = 3 , then
we can plug into G1,G2 and G3 to get the ciphertext y0 = 0 ,
y1 = 0 , y2 = 1 .
This is a bijective map and we can invert it easily. This
example is based on the Matsumoto-Imai cryptosystem.

27 33

The best designs

Internal perturbation of HFE and perturbed MI with Plus.
Designed by Ding, Schmidt.

But relatively slow and large key size.
New designs – Simple matrix method by Ding and Tao 2013.
The efficiency is now comparable with with the signature
scheme.

28 33

The best designs

Internal perturbation of HFE and perturbed MI with Plus.
Designed by Ding, Schmidt.
But relatively slow and large key size.

New designs – Simple matrix method by Ding and Tao 2013.
The efficiency is now comparable with with the signature
scheme.

28 33

The best designs

Internal perturbation of HFE and perturbed MI with Plus.
Designed by Ding, Schmidt.
But relatively slow and large key size.
New designs – Simple matrix method by Ding and Tao 2013.

The efficiency is now comparable with with the signature
scheme.

28 33

The best designs

Internal perturbation of HFE and perturbed MI with Plus.
Designed by Ding, Schmidt.
But relatively slow and large key size.
New designs – Simple matrix method by Ding and Tao 2013.
The efficiency is now comparable with with the signature
scheme.

28 33

Outline

1 Introduction

2 Signature schemes

3 Encryption schemes

4 Security Analysis

29 33

Main attacks

Albegraic attacks: attack a cryptosystem via a problem solving
a set of polynomial equations.
Degree of regularity, degeneration degree, solving degree.

MinRank Problem:
Given a set of matrix M1, ..Mn, find the nonetrivial minimum
rank of a1M1 + a2M2 + ..., anMn.
This is again coverted in to a polynomial solving problem.
Hidden symmetry: we can handle these problems easily by
eliminating those symmetries with mathematical proofs. (D.
Smith, R. Perlner)

30 33

Main attacks

Albegraic attacks: attack a cryptosystem via a problem solving
a set of polynomial equations.
Degree of regularity, degeneration degree, solving degree.
MinRank Problem:
Given a set of matrix M1, ..Mn, find the nonetrivial minimum
rank of a1M1 + a2M2 + ..., anMn.
This is again coverted in to a polynomial solving problem.

Hidden symmetry: we can handle these problems easily by
eliminating those symmetries with mathematical proofs. (D.
Smith, R. Perlner)

30 33

Main attacks

Albegraic attacks: attack a cryptosystem via a problem solving
a set of polynomial equations.
Degree of regularity, degeneration degree, solving degree.
MinRank Problem:
Given a set of matrix M1, ..Mn, find the nonetrivial minimum
rank of a1M1 + a2M2 + ..., anMn.
This is again coverted in to a polynomial solving problem.
Hidden symmetry: we can handle these problems easily by
eliminating those symmetries with mathematical proofs. (D.
Smith, R. Perlner)

30 33

Algebraic attacks

Algebraic attacks: attack a cryptosystem via a problem solving
a set of polynomial equations.

Polynomial solving algorithms: F4, Mutant XL, SAT solvers etc
We have a solid understanding of the complexity of those
attacks, where our theoretical analysis matches precisely the
experimental analysis.
Degeneration degree, solving degree (degree of regualrity)

31 33

Algebraic attacks

Algebraic attacks: attack a cryptosystem via a problem solving
a set of polynomial equations.
Polynomial solving algorithms: F4, Mutant XL, SAT solvers etc

We have a solid understanding of the complexity of those
attacks, where our theoretical analysis matches precisely the
experimental analysis.
Degeneration degree, solving degree (degree of regualrity)

31 33

Algebraic attacks

Algebraic attacks: attack a cryptosystem via a problem solving
a set of polynomial equations.
Polynomial solving algorithms: F4, Mutant XL, SAT solvers etc
We have a solid understanding of the complexity of those
attacks, where our theoretical analysis matches precisely the
experimental analysis.
Degeneration degree, solving degree (degree of regualrity)

31 33

Summary

MPKC provide the best signature designs in terms of
computing performance and signature size.

The security analysis has solid theoretical support and
systematic experimental support.
Drawback: relative large key sizes (10s KB) but can be
substantially improved with further optimization
We have solid but not so efficient encryption schemes. New
designs are catching up.

32 33

Summary

MPKC provide the best signature designs in terms of
computing performance and signature size.
The security analysis has solid theoretical support and
systematic experimental support.

Drawback: relative large key sizes (10s KB) but can be
substantially improved with further optimization
We have solid but not so efficient encryption schemes. New
designs are catching up.

32 33

Summary

MPKC provide the best signature designs in terms of
computing performance and signature size.
The security analysis has solid theoretical support and
systematic experimental support.
Drawback: relative large key sizes (10s KB) but can be
substantially improved with further optimization

We have solid but not so efficient encryption schemes. New
designs are catching up.

32 33

Summary

MPKC provide the best signature designs in terms of
computing performance and signature size.
The security analysis has solid theoretical support and
systematic experimental support.
Drawback: relative large key sizes (10s KB) but can be
substantially improved with further optimization
We have solid but not so efficient encryption schemes. New
designs are catching up.

32 33

The end

Thank you

33 33

	Introduction
	Signature schemes
	 Encryption schemes
	Security Analysis

