NIST - Talk 1

Post-quantum Cryptography Multivariate Public Key Cryptography

Jintai Ding
Academis Sinica
University of Cincinnati

April 2, 2014

Outline

1 Introduction

2 Signature schemes

3 Encryption schemes

4 Security Analysis

Outline

1 Introduction

2 Signature schemes

3 Encryption schemes

4 Security Analysis

PQC

Cryptosystems that have potential to resist the future quantum computer attacks.

■ Code-based cryptography

PQC

Cryptosystems that have potential to resist the future quantum computer attacks.

■ Code-based cryptography

- Hash-based crytograohy

PQC

Cryptosystems that have potential to resist the future quantum computer attacks.

■ Code-based cryptography

- Hash-based crytograohy

■ Lattice cryptography

PQC

Cryptosystems that have potential to resist the future quantum computer attacks.

■ Code-based cryptography

- Hash-based crytograohy
- Lattice cryptography
- Multivariate cryptography

What is a MPKC?

■ Multivariate Public Key Cryptosystems

- Cryptosystems with public keys as a set of multivariate functions

What is a MPKC?

■ Multivariate Public Key Cryptosystems

- Cryptosystems with public keys as a set of multivariate functions
- Public key: G is a map from k^{n} to k^{m} :

$$
\begin{gathered}
G\left(x_{1}, \ldots, x_{n}\right)=\left(g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, g_{m}\left(x_{1}, \ldots, x_{n}\right)\right) ; \\
G=L_{2} \circ F \circ L_{1},
\end{gathered}
$$

over k, a small finite field like $\operatorname{GF}\left(2^{8}\right)$
F : central map and F^{-1} easy to compute.
L_{1} and L_{2} : "locks" on the secret of F.

What is a MPKC?

■ Multivariate Public Key Cryptosystems

- Cryptosystems with public keys as a set of multivariate functions
■ Public key: G is a map from k^{n} to k^{m} :

$$
\begin{gathered}
G\left(x_{1}, \ldots, x_{n}\right)=\left(g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, g_{m}\left(x_{1}, \ldots, x_{n}\right)\right) ; \\
G=L_{2} \circ F \circ L_{1},
\end{gathered}
$$

over k, a small finite field like $\operatorname{GF}\left(2^{8}\right)$
F : central map and F^{-1} easy to compute.
L_{1} and L_{2} : "locks" on the secret of F.

- Private key: a way to compute G^{-1} via the map decomposition or factoring.

$$
G^{-1}=L_{2}^{-1} \circ F^{-1} \circ L_{1}^{-1}
$$

a MPKC signature system

■ Signing (a hash of) a document:

a MPKC signature system

- Signing (a hash of) a document: $\left(x_{1}, \ldots, x_{n}\right) \in G^{-1}\left(y_{1}, \ldots, y_{m}\right)$

$$
G^{-1}\left(y_{1}, \ldots, y_{m}\right)=L_{2}^{-1} \circ F^{-1} \circ L_{1}^{-1}\left(y_{1}, \ldots, y_{m}\right)
$$

■ Verifying: $\left(y_{1}, \ldots, y_{m}\right) \stackrel{?}{=} G\left(x_{1}, \ldots, x_{n}\right)$.

Theoretical Foundation

- Direct attack is to solve the set of equations:

$$
G(M)=G\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}^{\prime}, \ldots, y_{m}^{\prime}\right) .
$$

Theoretical Foundation

■ Direct attack is to solve the set of equations:

$$
G(M)=G\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}^{\prime}, \ldots, y_{m}^{\prime}\right) .
$$

■ - Solving a set of n randomly chosen equations (nonlinear) with n variables is NP-hard, though this does not necessarily ensure the security of the systems.

Quadratic Constructions

- 1) Efficiency considerations lead to mainly quadratic constructions.

$$
G_{l}\left(x_{1}, . . x_{n}\right)=\sum_{i, j} \alpha_{l i j} x_{i} x_{j}+\sum_{i} \beta_{l i} x_{i}+\gamma_{l} .
$$

Quadratic Constructions

- 1) Efficiency considerations lead to mainly quadratic constructions.

$$
G_{l}\left(x_{1}, . . x_{n}\right)=\sum_{i, j} \alpha_{l i j} x_{i} x_{j}+\sum_{i} \beta_{l i} x_{i}+\gamma_{l} .
$$

- 2) Mathematical structure consideration: Any set of high degree polynomial equations can be reduced to a set of quadratic equations.

$$
x_{1} x_{2} x_{3}=1
$$

is equivalent to

$$
\begin{aligned}
& x_{4}=x_{1} x_{2} \\
& x_{4} x_{3}=1
\end{aligned}
$$

The view from the history of Mathematics

- RSA - Number Theory - the 18th century mathematics

The view from the history of Mathematics

- RSA - Number Theory - the 18th century mathematics
- ECC - Theory of Elliptic Curves - the 19th century mathematics

The view from the history of Mathematics

■ RSA - Number Theory - the 18th century mathematics

- ECC - Theory of Elliptic Curves - the 19th century mathematics
- Multivariate Public key cryptosystem - Algebraic Geometry the 20th century mathematics

Algebraic Geometry - Theory of Polynomial Rings
Humans have been trying to solve polynomial equations for thousands of years.

A quick historic overview

■ Single variable quadratic equation - Babylonian around 1800 to 1600 BC

A quick historic overview

■ Single variable quadratic equation - Babylonian around 1800 to 1600 BC

- Cubic and quartic equation - around 1500

A quick historic overview

■ Single variable quadratic equation - Babylonian around 1800 to 1600 BC

- Cubic and quartic equation - around 1500

Tartaglia

■ Multivariate system- 1964-1965
Buchberger: Gröobner Basis
Hironaka: Normal basis

The hardness of the problem

- Single variable case - Galois's work.

Newton method - continuous system Berlekamp's algorithm - finite field and low degree

The hardness of the problem

- Single variable case - Galois's work.

Newton method - continuous system
Berlekamp's algorithm - finite field and low degree

- Multivariate case: NP- hardness of the generic systems.

Numerical solvers - continuous systems
Finite field case

Historical Development

■ Early attempts by Diffie, Fell, Imai, Ong, Matsumoto, Schnorr, Shamir, Tsujii, etc

Historical Development

■ Early attempts by Diffie, Fell, Imai, Ong, Matsumoto, Schnorr, Shamir, Tsujii, etc
■ Fast development in the late 1990s.

Outline

1 Introduction

2 Signature schemes

3 Encryption schemes

4 Security Analysis

How to construct G?

- The unbalanced Oil-Vinegar scheme by Kipnis, Patarin and Goubin 1999.

How to construct G?

■ The unbalanced Oil-Vinegar scheme by Kipnis, Patarin and Goubin 1999.

■ $G=F \circ L$.
F : nonlinear, easy to compute F^{-1}.
L : invertible linear, to hide the structure of F.

How to construct G?

- More efficient construction - Multi-layer UOV - Rainbow by Ding and Schmidt 2005.

How to construct G?

■ More efficient construction - Multi-layer UOV - Rainbow by Ding and Schmidt 2005.

■ $G=L_{2} \circ F \circ L_{1}$.
F : Multilayer UOV, easy to compute F^{-1}.
L_{1}, L_{2} : invertible linear, to hide the structure of F.

Unbalanced Oil-vinegar (uov) schemes

■ $F=\left(f_{1}\left(x_{1}, . ., x_{o}, x_{1}^{\prime}, \ldots, x_{v}^{\prime}\right), \cdots, f_{o}\left(x_{1}, . ., x_{o}, x_{1}^{\prime}, \ldots, x_{v}^{\prime}\right)\right)$.

Unbalanced Oil-vinegar (uov) schemes

- $F=\left(f_{1}\left(x_{1}, . ., x_{o}, x_{1}^{\prime}, \ldots, x_{v}^{\prime}\right), \cdots, f_{o}\left(x_{1}, . ., x_{o}, x_{1}^{\prime}, \ldots, x_{v}^{\prime}\right)\right)$.
- Each f_{i} is an Oil-Vinegar polynomial:
$f_{l}\left(x_{1}, ., x_{o}, x_{1}^{\prime}, ., x_{v}^{\prime}\right)=\sum a_{l i j} x_{i} x_{j}^{\prime}+\sum b_{l i j} x_{i}^{\prime} x_{j}^{\prime}+\sum c_{l i} x_{i}+\sum d_{l i} x_{i}^{\prime}+e_{l}$.

Oil variables: x_{1}, \ldots, x_{o}.

Vinegar variables: $x_{1}^{\prime}, \ldots, x_{v}^{\prime}$.

How to invert F?

- Randomly assign values to Vinegar variables:

$$
\begin{aligned}
& f_{l}(x_{1}, ., x_{o}, \underbrace{x_{1}^{\prime}, ., x_{v}^{\prime}}_{\text {fix the values }})= \\
& \sum a_{l i j} x_{i} x_{j}^{\prime}+\sum b_{l i j} x_{i}^{\prime} x_{j}^{\prime}+\sum c_{l i} x_{i}+\sum d_{l i} x_{i}^{\prime}+e_{l}
\end{aligned}
$$

How to invert F?

- Randomly assign values to Vinegar variables:

$$
\begin{aligned}
& f_{l}(x_{1}, ., x_{o}, \underbrace{x_{1}^{\prime}, ., x_{v}^{\prime}}_{\text {fix the values }})= \\
& \sum a_{l i j} x_{i} x_{j}^{\prime}+\sum b_{l i j} x_{i}^{\prime} x_{j}^{\prime}+\sum c_{l i} x_{i}+\sum d_{l i} x_{i}^{\prime}+e_{l} . \\
& f_{l}\left(x_{1}, ., x_{o}, x_{1}^{\prime}, ., x_{v}^{\prime}\right)= \\
& \sum a_{l i j} x_{i} x_{j}^{\prime}+\sum b_{l i j} x_{i}^{\prime} x_{j}^{\prime}+\sum c_{l i} x_{i}+\sum d_{l i} x_{i}^{\prime}+e_{l} .
\end{aligned}
$$

- F: linear in Oil variables: $x_{1}, . ., x_{0}$.
$\Longrightarrow F$: easy to invert.

The F for Rainbow

- Layer 1:

Vinegar: $x_{1}, ., x_{V_{1}}$
Oil: $x_{v_{1}+1}, ., x_{v_{1}+o_{1}}$

$$
\left(f_{1}, \ldots, f_{o_{1}}\right)
$$

The F for Rainbow

- Layer 1:

Vinegar: $x_{1}, ., x_{V_{1}}$
Oil: $x_{v_{1}+1}, ., x_{v_{1}+o_{1}}$

$$
\left(f_{1}, \ldots, f_{o_{1}}\right)
$$

- Layer 2:

Vinegar: $x_{1}, ., x_{V_{1}}, x_{V_{1}+1}, ., x_{V_{1}+o_{1}}$ Oil: $x_{V_{1}+o_{1}+1}, ., x_{V_{1}+o_{1}+o_{2}}$

$$
\left(f_{o_{1}+1}, \ldots, f_{o_{1}+o_{2}}\right)
$$

The F for Rainbow

- Layer 1:

Vinegar: $x_{1}, ., x_{V_{1}}$
Oil: $x_{v_{1}+1}, ., x_{v_{1}+o_{1}}$

$$
\left(f_{1}, \ldots, f_{o_{1}}\right)
$$

- Layer 2:

Vinegar: $x_{1}, ., x_{v_{1}}, x_{v_{1}+1}, ., x_{v_{1}+o_{1}}$ Oil: $x_{v_{1}+o_{1}+1}, ., x_{v_{1}+o_{1}+o_{2}}$

$$
\left(f_{o_{1}+1}, \ldots, f_{o_{1}+o_{2}}\right)
$$

$$
F=\left(f_{1}, . ., f_{o_{1}}, f_{o_{1}+1}, \ldots, f_{o_{1}+o_{2}}\right)
$$

The F^{-1} for Rainbow

- Layer 1:

Assign values to Vinegar: $x_{1}, ., x_{v_{1}}$ in

$$
\left(f_{1}, \ldots, f_{o_{1}}\right)=\left(y_{1}, . ., y_{o_{1}}\right)
$$

solve and find the value of Oil: $x_{v_{1}+1}, ., x_{v_{1}+o_{1}}$

The F^{-1} for Rainbow

- Layer 1:

Assign values to Vinegar: $x_{1}, ., x_{v_{1}}$ in

$$
\left(f_{1}, \ldots, f_{o_{1}}\right)=\left(y_{1}, . ., y_{o_{1}}\right),
$$

solve and find the value of Oil: $x_{v_{1}+1}, ., x_{v_{1}+o_{1}}$

- Layer 2:

Plug in values of
Vinegar: $x_{1}, ., x_{v_{1}}, x_{v_{1}+1}, ., x_{v_{1}+o_{1}}$
in

$$
\left(f_{o_{1}+1}, \ldots, f_{o_{1}+o_{2}}\right)=\left(y_{o_{1}+1}, . ., y_{o_{1}+o_{2}}\right)
$$

find the values of Oil: $x_{V_{1}+o_{1}+1}, ., x_{V_{1}+o_{1}+o_{2}}$

The F^{-1} for Rainbow

- Layer 1:

Assign values to Vinegar: $x_{1}, ., x_{v_{1}}$ in

$$
\left(f_{1}, \ldots, f_{o_{1}}\right)=\left(y_{1}, . ., y_{o_{1}}\right),
$$

solve and find the value of Oil: $x_{v_{1}+1}, ., x_{v_{1}+o_{1}}$

- Layer 2:

Plug in values of
Vinegar: $x_{1}, ., x_{v_{1}}, x_{v_{1}+1}, ., x_{v_{1}+o_{1}}$
in

$$
\left(f_{o_{1}+1}, \ldots, f_{o_{1}+o_{2}}\right)=\left(y_{o_{1}+1}, . ., y_{o_{1}+o_{2}}\right)
$$

find the values of Oil: $x_{v_{1}+o_{1}+1}, ., x_{v_{1}+o_{1}+o_{2}}$

- This givs us $F^{-1}\left(y_{i}, . ., y_{o_{1}+o_{2}}\right.$:

$$
\left(x_{1}, . ., x_{v_{1}}, \ldots, x_{o_{1}+v_{1}}, \ldots, x_{o_{1}+o_{2}+v_{1}}\right)
$$

Security analysis

1 Systematic theoretical and experimental analysis

- Direct attack does not work against best existing polynomial solving algorithms
The cpomplexity bahves just like a random system.
- Finding keys again becomes a problem of solving polynomial equations Here we need to be careful with choice of parameters.
- MinRank attack on Rainbow: Given a set of matrix $M_{1}, . . M_{n}$ find a non-trivial $\sum a_{i} M_{i}$ with lowest rank.
MinRank is a hard problem and attack it is reduced to solve multivariate polynomial equations again.
- Natural Side channel attack resistance.

Security analysis

1 Systematic theoretical and experimental analysis

- Direct attack does not work against best existing polynomial solving algorithms
The cpomplexity bahves just like a random system.
- Finding keys again becomes a problem of solving polynomial equations
Here we need to be careful with choice of parameters.
- MinRank attack on Rainbow: Given a set of matrix $M_{1}, . . M_{n}$ find a non-trivial $\sum a_{i} M_{i}$ with lowest rank.
MinRank is a hard problem and attack it is reduced to solve multivariate polynomial equations again.
- Natural Side channel attack resistance.

2 No weakness yet being found in the design.

Parameters and Performance

■ Rainbow($17,13,13$) over $G F\left(2^{8}\right)$: Signature size: 43 bytes, private key: 19.1 KB , public key 25.1 KB .
■ Rainbow $(26,16,17)$ over $G F\left(2^{8}\right)$: Signature size: 59 bytes , private key 45.0KB, public key 59.0KB.
■ Rainbow $(36,21,22)$ over $\operatorname{GF}\left(2^{8}\right)$: Signature size: 79 bytes, private key 101.5 KB , public key 136.1KB.

Parameters and Performance

■ High efficiency - solving linear equations.
IC for Rainbow: 804 cycles. (ASAP 2008)
FPGA implementation at Bochum (CHES 2009) - Beat ECC in area and speed.
Faster parallel implementation 200 cycles - (PQC 2011)

Parameters and Performance

■ High efficiency - solving linear equations.
IC for Rainbow: 804 cycles. (ASAP 2008)
FPGA implementation at Bochum (CHES 2009) - Beat ECC
in area and speed.
Faster parallel implementation 200 cycles - (PQC 2011)

- Relative large public key

Further optimizations - Petzoldt, Buchmann etc. at TU Darmstadt

Parameters and Performance

■ High efficiency - solving linear equations.
IC for Rainbow: 804 cycles. (ASAP 2008)
FPGA implementation at Bochum (CHES 2009) - Beat ECC
in area and speed.
Faster parallel implementation 200 cycles - (PQC 2011)

- Relative large public key

Further optimizations - Petzoldt, Buchmann etc. at TU Darmstadt

■ Highly efficient compact signature Small devices - RFID, Sensors.

Another choice - HFEV-Minus - Quartz

- The basic design: Hidden field equation system (HFE) with Vinegar variables and Minus modification designed in 1999 HFE: k^{n} can be identified as a Irage field $\bar{K}=k[x] / g(x)$, where $g(x)$ an ireeducible polynomial.

We use a olynomail

$$
F(X)=\sum a_{i j} X^{q^{i}+q^{j}}+\sum b_{i} X^{q^{i}}+C . .
$$

Another choice - HFEV-Minus - Quartz

- The basic design: Hidden field equation system (HFE) with Vinegar variables and Minus modification designed in 1999 HFE: k^{n} can be identified as a Irage field $\bar{K}=k[x] / g(x)$, where $g(x)$ an ireeducible polynomial.

We use a olynomail

$$
F(X)=\sum a_{i j} X^{q^{i}+q^{j}}+\sum b_{i} X^{q^{i}}+C . .
$$

■ Very short signature (107 bits) but slow.

Another choice - HFEV-Minus - Quartz

- The basic design: Hidden field equation system (HFE) with Vinegar variables and Minus modification designed in 1999 HFE: k^{n} can be identified as a Irage field $\bar{K}=k[x] / g(x)$, where $g(x)$ an ireeducible polynomial.

We use a olynomail

$$
F(X)=\sum a_{i j} X^{q^{i}+q^{j}}+\sum b_{i} X^{q^{i}}+C . .
$$

- Very short signature (107 bits) but slow.

■ No weakness yet found.

Another choice - HFEV-Minus - Quartz

- The basic design: Hidden field equation system (HFE) with Vinegar variables and Minus modification designed in 1999 HFE: k^{n} can be identified as a Irage field $\bar{K}=k[x] / g(x)$, where $g(x)$ an ireeducible polynomial.

We use a olynomail

$$
F(X)=\sum a_{i j} X^{q^{i}+q^{j}}+\sum b_{i} X^{q^{i}}+C . .
$$

■ Very short signature (107 bits) but slow.
■ No weakness yet found.
■ New designs by Ding, Petzoldt, Tao, Yang. very efficient (more than 1000 times faster with a 92 bits signature, or 170bits for post-quantum signature.)

Another choice - HFEV-Minus - Quartz

- The basic design: Hidden field equation system (HFE) with Vinegar variables and Minus modification designed in 1999 HFE: k^{n} can be identified as a Irage field $\bar{K}=k[x] / g(x)$, where $g(x)$ an ireeducible polynomial.

We use a olynomail

$$
F(X)=\sum a_{i j} X^{q^{i}+q^{j}}+\sum b_{i} X^{q^{i}}+C . .
$$

- Very short signature (107 bits) but slow.
- No weakness yet found.

■ New designs by Ding, Petzoldt, Tao, Yang. very efficient (more than 1000 times faster with a 92 bits signature, or 170bits for post-quantum signature.)

- Solid theoretical and experimental security analysis. Degree of regularity, solving degree, degeneration degree

Outline

1 Introduction

2 Signature schemes

3 Encryption schemes

4 Security Analysis

The basic design

- The public key is given as:

$$
G\left(x_{1}, \ldots, x_{n}\right)=\left(G_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, G_{m}\left(x_{1}, \ldots, x_{n}\right)\right)=L_{2} \circ F \circ L_{1}
$$

G_{i} are multivariate polynomials over a finite field, which are mostly degree 2

The basic design

- The public key is given as:

$$
G\left(x_{1}, \ldots, x_{n}\right)=\left(G_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, G_{m}\left(x_{1}, \ldots, x_{n}\right)\right)=L_{2} \circ F \circ L_{1}
$$

G_{i} are multivariate polynomials over a finite field, which are mostly degree 2

- Any plaintext $M=\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$ is encrypted via polynomial evaluation:

$$
G(M)=G\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)=\left(y_{1}^{\prime}, \ldots, y_{m}^{\prime}\right)
$$

The basic design

- The public key is given as:

$$
G\left(x_{1}, \ldots, x_{n}\right)=\left(G_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, G_{m}\left(x_{1}, \ldots, x_{n}\right)\right)=L_{2} \circ F \circ L_{1}
$$

G_{i} are multivariate polynomials over a finite field, which are mostly degree 2

- Any plaintext $M=\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$ is encrypted via polynomial evaluation:

$$
G(M)=G\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)=\left(y_{1}^{\prime}, \ldots, y_{m}^{\prime}\right) .
$$

- To decrypt the ciphertext $\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right)$, one needs to know a secret (the secret key) to compute the inverse map G^{-1} to find the plaintext $\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)=G^{-1}\left(y_{1}^{\prime}, . ., y_{n}^{\prime}\right)$.

Toy example

- We use the finite field $k=G F[2] /\left(x^{2}+x+1\right)$ with 2^{2} elements.

Toy example

- We use the finite field $k=G F[2] /\left(x^{2}+x+1\right)$ with 2^{2} elements.
■ We denote the elements of the field by the set $\{0,1,2,3\}$ to simplify the notation.
Here 0 represents the 0 in $k, 1$ for 1,2 for x, and 3 for $1+x$. In this case, $1+3=2$ and $2 * 3=1$.

A toy example

$$
\begin{array}{cc}
G_{0}\left(x_{1}, x_{2}, x_{3}\right)= & 1+x_{2}+2 x_{0} x_{2}+3 x_{1}^{2}+3 x_{1} x_{2}+x_{2}^{2} \\
G_{1}\left(x_{1}, x_{2}, x_{3}\right)= & 1+3 x_{0}+2 x_{1}+x_{2}+x_{0}^{2}+x_{0} x_{1}+3 x_{0} x_{2}+x_{1}^{2} \\
G_{2}\left(x_{1}, x_{2}, x_{3}\right)= & 3 x_{2}+x_{0}^{2}+3 x_{1}^{2}+x_{1} x_{2}+3 x_{2}^{2}
\end{array}
$$

A toy example

$$
\begin{array}{cc}
G_{0}\left(x_{1}, x_{2}, x_{3}\right)= & 1+x_{2}+2 x_{0} x_{2}+3 x_{1}^{2}+3 x_{1} x_{2}+x_{2}^{2} \\
G_{1}\left(x_{1}, x_{2}, x_{3}\right)= & 1+3 x_{0}+2 x_{1}+x_{2}+x_{0}^{2}+x_{0} x_{1}+3 x_{0} x_{2}+x_{1}^{2} \\
G_{2}\left(x_{1}, x_{2}, x_{3}\right)= & 3 x_{2}+x_{0}^{2}+3 x_{1}^{2}+x_{1} x_{2}+3 x_{2}^{2}
\end{array}
$$

■ For example, if the plaintext is: $x_{0}=1, x_{1}=2, x_{2}=3$, then we can plug into G_{1}, G_{2} and G_{3} to get the ciphertext $y_{0}=0$, $y_{1}=0, y_{2}=1$.

A toy example

$$
\begin{array}{cc}
G_{0}\left(x_{1}, x_{2}, x_{3}\right)= & 1+x_{2}+2 x_{0} x_{2}+3 x_{1}^{2}+3 x_{1} x_{2}+x_{2}^{2} \\
G_{1}\left(x_{1}, x_{2}, x_{3}\right)= & 1+3 x_{0}+2 x_{1}+x_{2}+x_{0}^{2}+x_{0} x_{1}+3 x_{0} x_{2}+x_{1}^{2} \\
G_{2}\left(x_{1}, x_{2}, x_{3}\right)= & 3 x_{2}+x_{0}^{2}+3 x_{1}^{2}+x_{1} x_{2}+3 x_{2}^{2}
\end{array}
$$

■ For example, if the plaintext is: $x_{0}=1, x_{1}=2, x_{2}=3$, then we can plug into G_{1}, G_{2} and G_{3} to get the ciphertext $y_{0}=0$, $y_{1}=0, y_{2}=1$.

- This is a bijective map and we can invert it easily. This example is based on the Matsumoto-Imai cryptosystem.

The best designs

■ Internal perturbation of HFE and perturbed MI with Plus. Designed by Ding, Schmidt.

The best designs

■ Internal perturbation of HFE and perturbed MI with Plus. Designed by Ding, Schmidt.

- But relatively slow and large key size.

The best designs

■ Internal perturbation of HFE and perturbed MI with Plus. Designed by Ding, Schmidt.

- But relatively slow and large key size.

■ New designs - Simple matrix method by Ding and Tao 2013.

The best designs

■ Internal perturbation of HFE and perturbed MI with Plus. Designed by Ding, Schmidt.

- But relatively slow and large key size.

■ New designs - Simple matrix method by Ding and Tao 2013.

- The efficiency is now comparable with with the signature scheme.

Outline

1 Introduction

2 Signature schemes

3 Encryption schemes

4 Security Analysis

Main attacks

■ Albegraic attacks: attack a cryptosystem via a problem solving a set of polynomial equations.
Degree of regularity, degeneration degree, solving degree.

Main attacks

■ Albegraic attacks: attack a cryptosystem via a problem solving a set of polynomial equations.
Degree of regularity, degeneration degree, solving degree.

- MinRank Problem:

Given a set of matrix $M_{1}, . . M_{n}$, find the nonetrivial minimum rank of $a_{1} M_{1}+a_{2} M_{2}+\ldots, a_{n} M_{n}$.
This is again coverted in to a polynomial solving problem.

Main attacks

■ Albegraic attacks: attack a cryptosystem via a problem solving a set of polynomial equations.
Degree of regularity, degeneration degree, solving degree.

- MinRank Problem:

Given a set of matrix $M_{1}, . . M_{n}$, find the nonetrivial minimum rank of $a_{1} M_{1}+a_{2} M_{2}+\ldots, a_{n} M_{n}$.
This is again coverted in to a polynomial solving problem.
■ Hidden symmetry: we can handle these problems easily by eliminating those symmetries with mathematical proofs. (D. Smith, R. Perlner)

Algebraic attacks

- Algebraic attacks: attack a cryptosystem via a problem solving a set of polynomial equations.

Algebraic attacks

- Algebraic attacks: attack a cryptosystem via a problem solving a set of polynomial equations.
■ Polynomial solving algorithms: F4, Mutant XL, SAT solvers etc

Algebraic attacks

- Algebraic attacks: attack a cryptosystem via a problem solving a set of polynomial equations.
■ Polynomial solving algorithms: F4, Mutant XL, SAT solvers etc
- We have a solid understanding of the complexity of those attacks, where our theoretical analysis matches precisely the experimental analysis.
Degeneration degree, solving degree (degree of regualrity)

Summary

■ MPKC provide the best signature designs in terms of computing performance and signature size.

Summary

■ MPKC provide the best signature designs in terms of computing performance and signature size.
■ The security analysis has solid theoretical support and systematic experimental support.

Summary

■ MPKC provide the best signature designs in terms of computing performance and signature size.
■ The security analysis has solid theoretical support and systematic experimental support.

- Drawback: relative large key sizes (10s KB) but can be substantially improved with further optimization

Summary

■ MPKC provide the best signature designs in terms of computing performance and signature size.
■ The security analysis has solid theoretical support and systematic experimental support.

- Drawback: relative large key sizes (10s KB) but can be substantially improved with further optimization
- We have solid but not so efficient encryption schemes. New designs are catching up.

The end

Thank you

