NIST – Talk 1

Post-quantum Cryptography Multivariate Public Key Cryptography

Jintai Ding

Academis Sinica University of Cincinnati

April 2, 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1 | 33

Outline

1 Introduction

- 2 Signature schemes
- 3 Encryption schemes
- 4 Security Analysis

< □ ▶ < @ ▶ < 볼 ▶ < 볼 ▶ 돌 の Q () 2 | 33

Outline

1 Introduction

3 Encryption schemes

4 Security Analysis

3 | 33

Code-based cryptography

- Code-based cryptography
- Hash-based crytograohy

- Code-based cryptography
- Hash-based crytograohy
- Lattice cryptography

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

4 | 33

- Code-based cryptography
- Hash-based crytograohy
- Lattice cryptography
- Multivariate cryptography

What is a MPKC?

Multivariate Public Key Cryptosystems

- Cryptosystems with public keys as a set of multivariate functions

What is a MPKC?

- Multivariate Public Key Cryptosystems
 - Cryptosystems with public keys as a set of multivariate functions
- Public key: G is a map from k^n to k^m :

$$G(x_1,\ldots,x_n) = (g_1(x_1,\ldots,x_n),\ldots,g_m(x_1,\ldots,x_n));$$

$$G = L_2 \circ F \circ L_1,$$

over k, a small finite field like $GF(2^8)$ F: central map and F^{-1} easy to compute. L_1 and L_2 : "locks" on the secret of F.

What is a MPKC?

- Multivariate Public Key Cryptosystems
 - Cryptosystems with public keys as a set of multivariate functions
- Public key: G is a map from k^n to k^m :

$$G(x_1,\ldots,x_n) = (g_1(x_1,\ldots,x_n),\ldots,g_m(x_1,\ldots,x_n));$$

$$G = L_2 \circ F \circ L_1,$$

- over k, a small finite field like $GF(2^8)$ F: central map and F^{-1} easy to compute. L_1 and L_2 : "locks" on the secret of F.
- Private key: a way to compute G⁻¹ via the map decomposition or factoring.

$$G^{-1} = L_2^{-1} \circ F^{-1} \circ L_1^{-1}.$$

• Signing (a hash of) a document:

Signing (a hash of) a document:
$$(x_1, \ldots, x_n) \in G^{-1}(y_1, \ldots, y_m)$$

$$G^{-1}(y_1, \dots, y_m) = L_2^{-1} \circ F^{-1} \circ L_1^{-1}(y_1, \dots, y_m).$$
• Verifying: $(y_1, \dots, y_m) \stackrel{?}{=} G(x_1, \dots, x_n).$

 Direct attack is to solve the set of equations:

$$G(M) = G(x_1, ..., x_n) = (y'_1, ..., y'_m).$$

Direct attack is to solve the set of equations:

$$G(M) = G(x_1, ..., x_n) = (y'_1, ..., y'_m).$$

 Solving a set of n randomly chosen equations (nonlinear) with n variables is NP-hard, though this does not necessarily ensure the security of the systems.

Quadratic Constructions

1) Efficiency considerations lead to mainly quadratic constructions.

$$G_l(x_1,..x_n) = \sum_{i,j} \alpha_{lij} x_i x_j + \sum_i \beta_{li} x_i + \gamma_l.$$

Quadratic Constructions

1) Efficiency considerations lead to mainly quadratic constructions.

$$G_l(x_1,..x_n) = \sum_{i,j} \alpha_{lij} x_i x_j + \sum_i \beta_{li} x_i + \gamma_l.$$

 2) Mathematical structure consideration: Any set of high degree polynomial equations can be reduced to a set of quadratic equations.

$$x_1x_2x_3=1,$$

is equivalent to

$$x_4 = x_1 x_2$$
$$x_4 x_3 = 1.$$

RSA – Number Theory – the 18th century mathematics

The view from the history of Mathematics

- RSA Number Theory the 18th century mathematics
- ECC Theory of Elliptic Curves the 19th century mathematics

- RSA Number Theory the 18th century mathematics
- ECC Theory of Elliptic Curves the 19th century mathematics
- Multivariate Public key cryptosystem Algebraic Geometry the 20th century mathematics

Algebraic Geometry – Theory of Polynomial Rings

Humans have been trying to solve polynomial equations for thousands of years.

A quick historic overview

 Single variable quadratic equation – Babylonian around 1800 to 1600 BC_

A quick historic overview

 Single variable quadratic equation – Babylonian around 1800 to 1600 BC

Cubic and quartic equation – around 1500

Tartaglia

A quick historic overview

 Single variable quadratic equation – Babylonian around 1800 to 1600 BC

■ Cubic and quartic equation – around 1500

イロト イヨト イヨト イヨト

- Tartaglia
- Multivariate system– 1964-1965
 Buchberger : Gröobner Basis
 Hironaka: Normal basis

The hardness of the problem

Single variable case – Galois's work.

Newton method – continuous system Berlekamp's algorithm – finite field and low degree

The hardness of the problem

Single variable case – Galois's work.

Newton method – continuous system Berlekamp's algorithm – finite field and low degree

 Multivariate case: NP- hardness of the generic systems. Numerical solvers – continuous systems
 Finite field case

Historical Development

 Early attempts by Diffie, Fell, Imai, Ong, Matsumoto, Schnorr, Shamir, Tsujii, etc

Historical Development

- Early attempts by Diffie, Fell, Imai, Ong, Matsumoto, Schnorr, Shamir, Tsujii, etc
- Fast development in the late 1990s.

Outline

1 Introduction

2 Signature schemes

- 3 Encryption schemes
- 4 Security Analysis

<ロト (四) (臣) (臣) (臣) 臣 のQ() 13133 The unbalanced Oil-Vinegar scheme by Kipnis, Patarin and Goubin 1999. The unbalanced Oil-Vinegar scheme by Kipnis, Patarin and Goubin 1999.

$$\bullet \ G = F \circ L.$$

F: nonlinear, easy to compute F^{-1} .

L: invertible linear, to hide the structure of F.

 More efficient construction - Multi-layer UOV - Rainbow by Ding and Schmidt 2005.

- More efficient construction Multi-layer UOV Rainbow by Ding and Schmidt 2005.
- $G = L_2 \circ F \circ L_1$.
 - F: Multilayer UOV, easy to compute F^{-1} .
 - L_1, L_2 : invertible linear, to hide the structure of F.

Unbalanced Oil-vinegar (uov) schemes

• $F = (f_1(x_1, ..., x_o, x'_1, ..., x'_v), \cdots, f_o(x_1, ..., x_o, x'_1, ..., x'_v)).$

Unbalanced Oil-vinegar (uov) schemes

•
$$F = (f_1(x_1, ..., x_o, x'_1, ..., x'_v), \cdots, f_o(x_1, ..., x_o, x'_1, ..., x'_v)).$$

• Each f_i is an Oil-Vinegar polynomial:

$$f_l(x_1,.,x_o,x_1',.,x_v') = \sum a_{lij}x_ix_j' + \sum b_{lij}x_i'x_j' + \sum c_{li}x_i + \sum d_{li}x_i' + e_l$$

Oil variables: $x_1, ..., x_o$.

Vinegar variables: $x'_1, ..., x'_v$.

Randomly assign values to Vinegar variables:

$$f_l(x_1,.,x_o, \underbrace{x'_1,.,x'_v}) =$$

fix the values

 $\sum a_{lij}x_ix_j' + \sum b_{lij}x_i'x_j' + \sum c_{li}x_i + \sum d_{li}x_i' + e_l.$

Randomly assign values to Vinegar variables:

$$f_l(x_1,.,x_o, \underbrace{x'_1,.,x'_v}_{\text{fix the values}}) = \\ \sum_{ijj} a_{lij} x_i x'_j + \sum_{ij} b_{lij} x'_i x'_j + \sum_{j} c_{li} x_i + \sum_{j} d_{li} x'_j + e_l.$$

$$f_l(x_1,.,x_o,x'_1,.,x'_v) = \sum_{ijj} a_{lij} x_i x'_j + \sum_{ij} b_{lij} x'_i x'_j + \sum_{ij} c_{li} x_i + \sum_{ij} d_{lij} x'_i x'_j + e_l.$$

• *F*: linear in Oil variables: $x_1, ..., x_o$.

 \implies *F*: easy to invert.

The F for Rainbow

 Layer 1: Vinegar: x₁, ., x_{v1} Oil: x_{v1+1}, ., x_{v1+o1}

$\left(f_{1},...,f_{o_{1}}\right)$
The F for Rainbow

 Layer 1: Vinegar: x₁, ., x_{v1} Oil: x_{v1+1}, ., x_{v1+o1}

 $\left(f_{1},...,f_{o_{1}}\right)$

Layer 2:

Vinegar: $x_1, .., x_{v_1}, x_{v_1+1}, .., x_{v_1+o_1}$ Oil: $x_{v_1+o_1+1}, .., x_{v_1+o_1+o_2}$

$$(f_{o_1+1}, ..., f_{o_1+o_2})$$

<ロト (部) (音) (音) (音) 音) の(で 18133

The F for Rainbow

 Layer 1: Vinegar: x₁, ., x_{v1} Oil: x_{v1+1}, ., x_{v1+o1}

$$(f_1, ..., f_{o_1})$$

Layer 2:

Vinegar: $x_1, .., x_{v_1}, x_{v_1+1}, .., x_{v_1+o_1}$ Oil: $x_{v_1+o_1+1}, .., x_{v_1+o_1+o_2}$

$$(f_{o_1+1}, ..., f_{o_1+o_2})$$

$$F = (f_1, ..., f_{o_1}, f_{o_1+1}, ..., f_{o_1+o_2}).$$

The F^{-1} for Rainbow

Layer 1: Assign values to Vinegar: x₁,.,x_{v1} in

$$(f_1, ..., f_{o_1}) = (y_1, ..., y_{o_1}),$$

solve and find the value of Oil: $x_{v_1+1}, .., x_{v_1+o_1}$

The F^{-1} for Rainbow

Layer 1: Assign values to Vinegar: x₁,.,x_{v1} in

$$(f_1, ..., f_{o_1}) = (y_1, ..., y_{o_1}),$$

solve and find the value of Oil: $x_{v_1+1}, .., x_{v_1+o_1}$

 Layer 2: Plug in values of Vinegar: x₁, ., x_{v1}, x_{v1+1}, ., x_{v1+o1} in

$$(f_{o_1+1},...,f_{o_1+o_2}) = (y_{o_1+1},..,y_{o_1+o_2})$$

find the values of Oil: $x_{v_1+o_1+1}, ., x_{v_1+o_1+o_2}$

The F^{-1} for Rainbow

Layer 1: Assign values to Vinegar: x₁,.,x_{v1} in

$$(f_1, ..., f_{o_1}) = (y_1, ..., y_{o_1}),$$

solve and find the value of Oil: $x_{v_1+1}, .., x_{v_1+o_1}$

• Layer 2: Plug in values of Vinegar: $x_1, .., x_{v_1}, x_{v_1+1}, .., x_{v_1+o_1}$ in

$$(f_{o_1+1},...,f_{o_1+o_2}) = (y_{o_1+1},..,y_{o_1+o_2})$$

find the values of Oil: $x_{v_1+o_1+1}, ., x_{v_1+o_1+o_2}$

This gives us $F^{-1}(y_i, ..., y_{o_1+o_2})$: $(x_1, ..., x_{v_1}, ..., x_{o_1+v_1}, ..., x_{o_1+o_2+v_1})$.

Security analysis

1 Systematic theoretical and experimental analysis

- Direct attack does not work against best existing polynomial solving algorithms
 The granden system
 - The cpomplexity bahves just like a random system.
- Finding keys again becomes a problem of solving polynomial equations

Here we need to be careful with choice of parameters.

MinRank attack on Rainbow:

Given a set of matrix $M_1, ..., M_n$ find a non-trivial $\sum a_i M_i$ with lowest rank.

MinRank is a hard problem and attack it is reduced to solve multivariate polynomial equations again.

Natural Side channel attack resistance.

Security analysis

1 Systematic theoretical and experimental analysis

- Direct attack does not work against best existing polynomial solving algorithms
 The granden system
- The cpomplexity bahves just like a random system.Finding keys again becomes a problem of solving polynomial
- Finding keys again becomes a problem of solving polynomial equations

Here we need to be careful with choice of parameters.

MinRank attack on Rainbow:

Given a set of matrix $M_1, ..., M_n$ find a non-trivial $\sum a_i M_i$ with lowest rank.

MinRank is a hard problem and attack it is reduced to solve multivariate polynomial equations again.

- Natural Side channel attack resistance.
- 2 No weakness yet being found in the design.

- Rainbow(17,13,13) over GF(2⁸): Signature size: 43 bytes, private key: 19.1KB, public key 25.1KB.
- Rainbow(26,16,17) over GF(2⁸): Signature size: 59 bytes , private key 45.0KB, public key 59.0KB.
- Rainbow(36,21,22) over GF(2⁸): Signature size: 79 bytes, private key 101.5KB, public key 136.1KB.

21 | 33

High efficiency – solving linear equations.
 IC for Rainbow: 804 cycles. (ASAP 2008)
 FPGA implementation at Bochum (CHES 2009) – Beat ECC in area and speed.

Faster parallel implementation 200 cycles – (PQC 2011)

- High efficiency solving linear equations.
 IC for Rainbow: 804 cycles. (ASAP 2008)
 FPGA implementation at Bochum (CHES 2009) Beat ECC in area and speed.
 Faster parallel implementation 200 cycles (PQC 2011)
- Relative large public key
 Further optimizations Petzoldt, Buchmann etc. at TU
 Darmstadt

High efficiency – solving linear equations.
 IC for Rainbow: 804 cycles. (ASAP 2008)
 FPGA implementation at Bochum (CHES 2009) – Beat ECC in area and speed.

Faster parallel implementation 200 cycles – (PQC 2011)

- Relative large public key
 Further optimizations Petzoldt, Buchmann etc. at TU
 Darmstadt
- Highly efficient compact signature Small devices – RFID, Sensors.

 The basic design: Hidden field equation system (HFE) with Vinegar variables and Minus modification designed in 1999

HFE: k^n can be identified as a lrage field $\overline{K} = k[x]/g(x)$, where g(x) an ireeducible polynomial.

$$F(X) = \sum a_{ij} X^{q^i+q^j} + \sum b_i X^{q^i} + C..$$

 The basic design: Hidden field equation system (HFE) with Vinegar variables and Minus modification designed in 1999

HFE: k^n can be identified as a lrage field $\overline{K} = k[x]/g(x)$, where g(x) an ireeducible polynomial.

We use a olynomail

$$F(X) = \sum a_{ij} X^{q^i+q^j} + \sum b_i X^{q^i} + C..$$

Very short signature (107 bits) but slow.

 The basic design: Hidden field equation system (HFE) with Vinegar variables and Minus modification designed in 1999

HFE: k^n can be identified as a lrage field $\overline{K} = k[x]/g(x)$, where g(x) an ireeducible polynomial.

$$F(X) = \sum a_{ij} X^{q^i+q^j} + \sum b_i X^{q^i} + C..$$

- Very short signature (107 bits) but slow.
- No weakness yet found.

The basic design: Hidden field equation system (HFE) with Vinegar variables and Minus modification designed in 1999

HFE: k^n can be identified as a lrage field $\overline{K} = k[x]/g(x)$, where g(x) an ireeducible polynomial.

$$F(X) = \sum a_{ij} X^{q^i+q^j} + \sum b_i X^{q^i} + C..$$

- Very short signature (107 bits) but slow.
- No weakness yet found.
- New designs by Ding, Petzoldt, Tao, Yang. very efficient (more than 1000 times faster with a 92 bits signature, or 170bits for post-quantum signature.)

 The basic design: Hidden field equation system (HFE) with Vinegar variables and Minus modification designed in 1999

HFE: k^n can be identified as a lrage field $\overline{K} = k[x]/g(x)$, where g(x) an ireeducible polynomial.

$$F(X) = \sum a_{ij}X^{q^i+q^j} + \sum b_iX^{q^i} + C..$$

- Very short signature (107 bits) but slow.
- No weakness yet found.
- New designs by Ding, Petzoldt, Tao, Yang. very efficient (more than 1000 times faster with a 92 bits signature, or 170bits for post-quantum signature.)
- Solid theoretical and experimental security analysis.
 Degree of regularity, solving degree, degeneration degree

Outline

1 Introduction

- 2 Signature schemes
- 3 Encryption schemes
- 4 Security Analysis

<□▶ < @▶ < 불▶ < 불▶ 불 이 Q () 24 | 33

The basic design

• The public key is given as:

$$G(x_1,...,x_n) = (G_1(x_1,...,x_n),...,G_m(x_1,...,x_n)) = L_2 \circ F \circ L_1.$$

 G_i are multivariate polynomials over a finite field, which are mostly degree 2

The basic design

The public key is given as:

$$G(x_1,...,x_n) = (G_1(x_1,...,x_n),...,G_m(x_1,...,x_n)) = L_2 \circ F \circ L_1.$$

 G_i are multivariate polynomials over a finite field, which are mostly degree 2

Any plaintext M = (x'_1, ..., x'_n) is encrypted via polynomial evaluation:
 G(M) = G(x'_1, ..., x'_n) = (y'_1, ..., y'_m).

The basic design

The public key is given as:

$$G(x_1,...,x_n) = (G_1(x_1,...,x_n),...,G_m(x_1,...,x_n)) = L_2 \circ F \circ L_1.$$

 G_i are multivariate polynomials over a finite field, which are mostly degree 2

- Any plaintext M = (x'_1, ..., x'_n) is encrypted via polynomial evaluation:
 G(M) = G(x'_1, ..., x'_n) = (y'_1, ..., y'_m).
- To decrypt the ciphertext (y'₁,..., y'_n), one needs to know a secret (the secret key) to compute the inverse map G⁻¹ to find the plaintext (x'₁,...,x'_n) = G⁻¹(y'₁,...,y'_n).

• We use the finite field $k = GF[2]/(x^2 + x + 1)$ with 2^2 elements.

Toy example

- We use the finite field $k = GF[2]/(x^2 + x + 1)$ with 2^2 elements.
- We denote the elements of the field by the set {0, 1, 2, 3} to simplify the notation.
 Here 0 represents the 0 in k, 1 for 1, 2 for x, and 3 for 1 + x. In this case, 1 + 3 = 2 and 2 * 3 = 1.

A toy example

$\begin{aligned} G_0(x_1, x_2, x_3) &= & 1 + x_2 + 2x_0x_2 + 3x_1^2 + 3x_1x_2 + x_2^2 \\ G_1(x_1, x_2, x_3) &= & 1 + 3x_0 + 2x_1 + x_2 + x_0^2 + x_0x_1 + 3x_0x_2 + x_1^2 \\ G_2(x_1, x_2, x_3) &= & 3x_2 + x_0^2 + 3x_1^2 + x_1x_2 + 3x_2^2 \end{aligned}$

A toy example

$\begin{aligned} G_0(x_1, x_2, x_3) &= & 1 + x_2 + 2x_0x_2 + 3x_1^2 + 3x_1x_2 + x_2^2 \\ G_1(x_1, x_2, x_3) &= & 1 + 3x_0 + 2x_1 + x_2 + x_0^2 + x_0x_1 + 3x_0x_2 + x_1^2 \\ G_2(x_1, x_2, x_3) &= & 3x_2 + x_0^2 + 3x_1^2 + x_1x_2 + 3x_2^2 \end{aligned}$

■ For example, if the plaintext is: x₀ = 1, x₁ = 2, x₂ = 3, then we can plug into G₁, G₂ and G₃ to get the ciphertext y₀ = 0, y₁ = 0, y₂ = 1.

A toy example

$$\begin{aligned} G_0(x_1, x_2, x_3) &= & 1 + x_2 + 2x_0x_2 + 3x_1^2 + 3x_1x_2 + x_2^2 \\ G_1(x_1, x_2, x_3) &= & 1 + 3x_0 + 2x_1 + x_2 + x_0^2 + x_0x_1 + 3x_0x_2 + x_1^2 \\ G_2(x_1, x_2, x_3) &= & 3x_2 + x_0^2 + 3x_1^2 + x_1x_2 + 3x_2^2 \end{aligned}$$

- For example, if the plaintext is: x₀ = 1, x₁ = 2, x₂ = 3, then we can plug into G₁, G₂ and G₃ to get the ciphertext y₀ = 0, y₁ = 0, y₂ = 1.
- This is a bijective map and we can invert it easily. This example is based on the Matsumoto-Imai cryptosystem.

 Internal perturbation of HFE and perturbed MI with Plus. Designed by Ding, Schmidt.

- Internal perturbation of HFE and perturbed MI with Plus. Designed by Ding, Schmidt.
- But relatively slow and large key size.

- Internal perturbation of HFE and perturbed MI with Plus. Designed by Ding, Schmidt.
- But relatively slow and large key size.
- New designs Simple matrix method by Ding and Tao 2013.

- Internal perturbation of HFE and perturbed MI with Plus. Designed by Ding, Schmidt.
- But relatively slow and large key size.
- New designs Simple matrix method by Ding and Tao 2013.
- The efficiency is now comparable with with the signature scheme.

Outline

1 Introduction

- 2 Signature schemes
- 3 Encryption schemes
- 4 Security Analysis

< □ ▶ < 圖 ▶ < 필 ▶ < 필 ▶ 를 ♡ Q () 29 | 33

Main attacks

 Albegraic attacks: attack a cryptosystem via a problem solving a set of polynomial equations.
 Degree of regularity, degeneration degree, solving degree.

Main attacks

- Albegraic attacks: attack a cryptosystem via a problem solving a set of polynomial equations.
 Degree of regularity, degeneration degree, solving degree.
- MinRank Problem: Given a set of matrix $M_1, ...M_n$, find the nonetrivial minimum rank of $a_1M_1 + a_2M_2 + ..., a_nM_n$.

This is again coverted in to a polynomial solving problem.

Main attacks

 Albegraic attacks: attack a cryptosystem via a problem solving a set of polynomial equations.

Degree of regularity, degeneration degree, solving degree.

- MinRank Problem: Given a set of matrix $M_1, ...M_n$, find the nonetrivial minimum rank of $a_1M_1 + a_2M_2 + ..., a_nM_n$. This is again coverted in to a polynomial solving problem.
- Hidden symmetry: we can handle these problems easily by eliminating those symmetries with mathematical proofs. (D. Smith, R. Perlner)

 Algebraic attacks: attack a cryptosystem via a problem solving a set of polynomial equations.

- Algebraic attacks: attack a cryptosystem via a problem solving a set of polynomial equations.
- Polynomial solving algorithms: F4, Mutant XL, SAT solvers etc

- Algebraic attacks: attack a cryptosystem via a problem solving a set of polynomial equations.
- Polynomial solving algorithms: F4, Mutant XL, SAT solvers etc
- We have a solid understanding of the complexity of those attacks, where our theoretical analysis matches precisely the experimental analysis.

Degeneration degree, solving degree (degree of regualrity)

 MPKC provide the best signature designs in terms of computing performance and signature size.

- MPKC provide the best signature designs in terms of computing performance and signature size.
- The security analysis has solid theoretical support and systematic experimental support.

- MPKC provide the best signature designs in terms of computing performance and signature size.
- The security analysis has solid theoretical support and systematic experimental support.
- Drawback: relative large key sizes (10s KB) but can be substantially improved with further optimization

- MPKC provide the best signature designs in terms of computing performance and signature size.
- The security analysis has solid theoretical support and systematic experimental support.
- Drawback: relative large key sizes (10s KB) but can be substantially improved with further optimization
- We have solid but not so efficient encryption schemes. New designs are catching up.

Thank you

