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PQC

Cryptosystems that have potential to resist the future quantum
computer attacks.

Code-based cryptography

Hash-based crytograohy
Lattice cryptography
Multivariate cryptography
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What is a MPKC?

Multivariate Public Key Cryptosystems
- Cryptosystems with public keys as a set of multivariate
functions

Public key: G is a map from kn to km:

G (x1, . . . , xn) = (g1(x1, . . . , xn), . . . , gm(x1, . . . , xn));

G = L2 ◦ F ◦ L1,

over k , a small finite field like GF(28)
F : central map and F−1 easy to compute.
L1 and L2: "locks" on the secret of F .
Private key: a way to compute G−1 via the map
decomposition or factoring.

G−1 = L−1
2 ◦ F

−1 ◦ L−1
1 .
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a MPKC signature system

Signing (a hash of) a document:

(x1, . . . , xn) ∈ G−1(y1, . . . , ym)

G−1(y1, . . . , ym) = L−1
2 ◦ F

−1 ◦ L−1
1 (y1, . . . , ym).

Verifying: (y1, . . . , ym)
?
= G (x1, . . . , xn).
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Theoretical Foundation

Direct attack is to solve the set of equations:

G (M) = G (x1, ..., xn) = (y ′1, ..., y
′
m).

- Solving a set of n randomly chosen equations (nonlinear)
with n variables is NP-hard, though this does not necessarily
ensure the security of the systems.
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Quadratic Constructions

1) Efficiency considerations lead to mainly quadratic
constructions.

Gl (x1, ..xn) =
∑
i ,j

αlijxixj +
∑

i

βlixi + γl .

2) Mathematical structure consideration: Any set of high
degree polynomial equations can be reduced to a set of
quadratic equations.

x1x2x3 = 1,

is equivalent to

x4 = x1x2

x4x3 = 1.
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The view from the history of Mathematics

RSA – Number Theory – the 18th century mathematics

ECC – Theory of Elliptic Curves – the 19th century
mathematics
Multivariate Public key cryptosystem – Algebraic Geometry –
the 20th century mathematics

Algebraic Geometry – Theory of Polynomial Rings

Humans have been trying to solve polynomial equations for
thousands of years.
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A quick historic overview

Single variable quadratic equation – Babylonian around 1800
to 1600 BC

Cubic and quartic equation – around 1500

Tartaglia Cardano
Multivariate system– 1964-1965
Buchberger : Gröobner Basis
Hironaka: Normal basis
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The hardness of the problem

Single variable case – Galois’s work.

Newton method – continuous system
Berlekamp’s algorithm – finite field and low degree

Multivariate case: NP- hardness of the generic systems.
Numerical solvers – continuous systems
Finite field case
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Historical Development

Early attempts by Diffie, Fell, Imai, Ong, Matsumoto, Schnorr,
Shamir, Tsujii, etc

Fast development in the late 1990s.
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How to construct G?

The unbalanced Oil-Vinegar scheme by Kipnis, Patarin and
Goubin 1999.

G = F ◦ L.
F : nonlinear, easy to compute F−1.
L: invertible linear, to hide the structure of F .
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Unbalanced Oil-vinegar (uov) schemes

F = (f1(x1, .., xo , x ′1, ..., x
′
v ), · · · , fo(x1, .., xo , x ′1, ..., x

′
v )).

Each fi is an Oil-Vinegar polynomial:

fl (x1, ., xo , x ′1, ., x
′
v ) =

∑
alijxix ′j +

∑
blijx ′i x

′
j +

∑
clixi+

∑
dlix ′i +el .

Oil variables: x1, ..., xo .

Vinegar variables: x ′1, ..., x
′
v .
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How to invert F?

Randomly assign values to Vinegar variables:

fl (x1, ., xo , x ′1, ., x
′
v︸ ︷︷ ︸

fix the values

) =

∑
alijxix ′j +

∑
blijx ′i x

′
j +

∑
clixi +

∑
dlix ′i + el .

fl (x1, ., xo , x ′1, ., x
′
v ) =∑

alijxix ′j +
∑

blijx ′i x
′
j +

∑
clixi +

∑
dlix ′i + el .

F : linear in Oil variables: x1, .., xo .

=⇒ F : easy to invert.
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The F for Rainbow

Layer 1:
Vinegar: x1, ., xv1

Oil: xv1+1, ., xv1+o1

(f1, ..., fo1)

Layer 2:
Vinegar: x1, ., xv1 , xv1+1, ., xv1+o1 Oil: xv1+o1+1, ., xv1+o1+o2

(fo1+1, ..., fo1+o2)

F = (f1, .., fo1 , fo1+1, ..., fo1+o2).
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The F−1 for Rainbow

Layer 1:
Assign values to Vinegar: x1, ., xv1 in

(f1, ..., fo1) = (y1, .., yo1),

solve and find the value of Oil: xv1+1, ., xv1+o1

Layer 2:
Plug in values of
Vinegar: x1, ., xv1 , xv1+1, ., xv1+o1

in
(fo1+1, ..., fo1+o2) = (yo1+1, .., yo1+o2)

find the values of Oil: xv1+o1+1, ., xv1+o1+o2

This givs us F−1(yi , .., yo1+o2 :
(x1, .., xv1 , ..., xo1+v1 , ..., xo1+o2+v1).
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Security analysis

1 Systematic theoretical and experimental analysis

Direct attack does not work against best existing polynomial
solving algorithms
The cpomplexity bahves just like a random system.
Finding keys again becomes a problem of solving polynomial
equations
Here we need to be careful with choice of parameters.
MinRank attack on Rainbow:
Given a set of matrix M1, ..Mn find a non-trivial

∑
aiMi with

lowest rank.
MinRank is a hard problem and attack it is reduced to solve
multivariate polynomial equations again.
Natural Side channel attack resistance.

2 No weakness yet being found in the design.
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Parameters and Performance

Rainbow(17,13,13) over GF(28): Signature size: 43 bytes,
private key: 19.1KB, public key 25.1KB.
Rainbow(26,16,17) over GF(28): Signature size: 59 bytes ,
private key 45.0KB, public key 59.0KB.
Rainbow(36,21,22) over GF(28): Signature size: 79 bytes,
private key 101.5KB, public key 136.1KB.
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Parameters and Performance

High efficiency – solving linear equations.
IC for Rainbow: 804 cycles. ( ASAP 2008)
FPGA implementation at Bochum (CHES 2009) – Beat ECC
in area and speed.
Faster parallel implementation 200 cycles – (PQC 2011)

Relative large public key
Further optimizations – Petzoldt, Buchmann etc. at TU
Darmstadt
Highly efficient compact signature
Small devices – RFID, Sensors.
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Another choice – HFEV-Minus – Quartz

The basic design: Hidden field equation system (HFE) with
Vinegar variables and Minus modification designed in 1999

HFE: kn can be identified as a lrage field K̄ = k[x ]/g(x),
where g(x) an ireeducible polynomial.

We use a olynomail

F (X ) =
∑

aijX qi+qj
+
∑

biX qi
+ C ..

Very short signature ( 107 bits) but slow.
No weakness yet found.
New designs by Ding, Petzoldt, Tao, Yang. very efficient
(more than 1000 times faster with a 92 bits signature, or
170bits for post-quantum signature.)
Solid theoretical and experimental security analysis.
Degree of regularity, solving degree, degeneration degree
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The basic design

The public key is given as:

G (x1, ..., xn) = (G1(x1, ..., xn), ...,Gm(x1, ..., xn)) = L2 ◦ F ◦ L1.

Gi are multivariate polynomials over a finite field, which are
mostly degree 2

Any plaintext M = (x ′1, ..., x
′
n) is encrypted via polynomial

evaluation:
G (M) = G (x ′1, ..., x

′
n) = (y ′1, ..., y

′
m).

To decrypt the ciphertext (y ′1, ..., y
′
n), one needs to know a

secret (the secret key) to compute the inverse map G−1 to
find the plaintext (x ′1, ..., x

′
n) = G−1(y ′1, .., y

′
n).
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Toy example

We use the finite field k = GF [2]/(x2 + x + 1) with 22

elements.

We denote the elements of the field by the set {0 , 1 , 2 , 3} to
simplify the notation.
Here 0 represents the 0 in k , 1 for 1, 2 for x , and 3 for 1 + x .
In this case, 1 + 3 = 2 and 2 ∗ 3 = 1 .
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A toy example

G0(x1, x2, x3) = 1 + x2 + 2x0x2 + 3x2
1 + 3x1x2 + x2

2

G1(x1, x2, x3) = 1 + 3x0 + 2x1 + x2 + x2
0 + x0x1 + 3x0x2 + x2

1

G2(x1, x2, x3) = 3x2 + x2
0 + 3x2

1 + x1x2 + 3x2
2

For example, if the plaintext is: x0 = 1 , x1 = 2 , x2 = 3 , then
we can plug into G1,G2 and G3 to get the ciphertext y0 = 0 ,
y1 = 0 , y2 = 1 .
This is a bijective map and we can invert it easily. This
example is based on the Matsumoto-Imai cryptosystem.
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The best designs

Internal perturbation of HFE and perturbed MI with Plus.
Designed by Ding, Schmidt.

But relatively slow and large key size.
New designs – Simple matrix method by Ding and Tao 2013.
The efficiency is now comparable with with the signature
scheme.
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Main attacks

Albegraic attacks: attack a cryptosystem via a problem solving
a set of polynomial equations.
Degree of regularity, degeneration degree, solving degree.

MinRank Problem:
Given a set of matrix M1, ..Mn, find the nonetrivial minimum
rank of a1M1 + a2M2 + ..., anMn.
This is again coverted in to a polynomial solving problem.
Hidden symmetry: we can handle these problems easily by
eliminating those symmetries with mathematical proofs. ( D.
Smith, R. Perlner)
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Algebraic attacks

Algebraic attacks: attack a cryptosystem via a problem solving
a set of polynomial equations.

Polynomial solving algorithms: F4, Mutant XL, SAT solvers etc
We have a solid understanding of the complexity of those
attacks, where our theoretical analysis matches precisely the
experimental analysis.
Degeneration degree, solving degree ( degree of regualrity)
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Summary

MPKC provide the best signature designs in terms of
computing performance and signature size.

The security analysis has solid theoretical support and
systematic experimental support.
Drawback: relative large key sizes (10s KB) but can be
substantially improved with further optimization
We have solid but not so efficient encryption schemes. New
designs are catching up.
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The end

Thank you
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